『壹』 利用協同過濾演算法為用戶推薦商品的方法有哪些
協同過濾(Collaborative Filtering)的基本復概念就是制把這種推薦方式變成自動化的流程
協同過濾主要是以屬性或興趣相近的用戶經驗與建議作為提供個性化推薦的基礎。透過協同過濾,有助於搜集具有類似偏好或屬性的用戶,並將其意見提供給同一集群中的用戶作為參考,以滿足人們通常在決策之前參考他人意見的心態。
本人認為,協同過濾技術應包括如下幾方面:(1)一種比對和搜集每個用戶興趣偏好的過程;(2)它需要許多用戶的信息去預測個人的興趣偏好;(3)通過對用戶之間興趣偏好相關程度的統計去發展建議那些有相同興趣偏好的用戶。
『貳』 協同過濾中的可擴展性問題是什麼
協同過濾演算法能夠容易地為幾千名用戶提供較好的推薦,但是對於電子商務網站,往往需要給成百上千萬的用戶提供推薦,這就一方面需要提高響應時間的要求,能夠為用戶實時地進行推薦;另一方面還應考慮到存儲空間的要求,盡量減少推薦系統運行的負擔。
1.3 可擴展性問題
在協同過濾推薦演算法中,全局數值演算法能及時利用最新的信息為用戶產生相對准確的用戶興趣度預測或進行推薦,但是面對日益增多的用戶,數據量的急劇增加,演算法的擴展性問題(即適應系統規模不斷擴大的問題)成為制約推薦系統實施的重要因素。雖然與基於模型的演算法相比,全局數值演算法節約了為建立模型而花費的訓練時間,但是用於識別「最近鄰居」演算法的計算量隨著用戶和項的增加而大大增加,對於上百萬的數目,通常的演算法會遇到嚴重的擴展性瓶頸問題。該問題解決不好,直接影響著基於協同過濾技術的推薦系統實時向用戶提供推薦問題的解決,而推薦系統的實時性越好,精確度越高,該系統才會被用戶所接受。
基於模型的演算法雖然可以在一定程度上解決演算法的可擴展性問題,但是該類演算法往往比較適於用戶的興趣愛好比較穩定的情況,因為它要考慮用戶模型的學習過程以及模型的更新過程,對於最新信息的利用比全局數值演算法要差些。
分析以上協同過濾在推薦系統實現中面臨的兩個問題,它們的共同點是均考慮到了最近鄰居的形成問題(包括用戶信息獲得的充分性、計算耗費等)。但是應該看到協同過濾在推薦系統的實現中,要獲得最近鄰居用戶,必須通過一定的計算獲得用戶之間的相似度,然後確定最佳的鄰居個數,形成鄰居用戶集。而在這一過程中,如果對全部數據集進行相似性計算,雖然直接,但是運算量和時間花費都極大,無法適應真實的商務系統。如果通過對訓練集數據(整個數據集的某一子集)進行實驗獲得,雖然不必對整個數據集進行計算,但是必須通過將多次實驗結果統計出來才可能得到,這無疑也增加了推薦結果獲得的代價和誤差。並且如果考慮到數據集的動態變化,這一形成最近鄰居用戶集技術的實際應用價值越來越小。因此,考慮使用更為有效的最近鄰居用戶形成辦法,對於協同過濾的應用非常必要。
『叄』 個性化推薦演算法——協同過濾
有三種:協同過濾
用戶歷史行為
物品相似矩陣
『肆』 協同過濾
協同過濾(Collaborative Filtering,CF)——經典/老牌
只用戶行為數據得到。對於 個用戶, 個物品,則有共現矩陣 :
對於有正負反饋的情況,如「贊」是1和「踩」是-1,無操作是0:
對於只有顯示反饋,如點擊是1,無操作是0:
演算法步驟:
1)得到共現矩陣 ;
2)計算 任意兩行 用戶相似度,得到用戶相似度矩陣 ;
3)針對某個用戶 選出與其最相似的 個用戶, 是超參數;——召回階段
4)基於這 個用戶,計算 對每個物品的得分;
5)按照用戶 的物品得分進行排序,過濾已推薦的物品,推薦剩下得分最高的 個。——排序階段
第2步中,怎麼計算用戶相似度?——使用共現矩陣的行
以餘弦相似度為標准,計算 和 之間的相似度:
第4步中,怎麼每個用戶對每個物品的得分?
假如和用戶 最相似的2個為 和 :
對物品 的評分為1,用戶 對物品 的評分也為1,那麼用戶 對 的評分為:
也就是說:利用用戶相似度對用戶評分進行加權平均:
其中, 為用戶 和用戶 之間的相似度, 為用戶 和物品 之間的相似度。
UserCF的缺點
1、現實中用戶數遠遠大於物品數,所以維護用戶相似度矩陣代價很大;
2、共現矩陣是很稀疏的,那麼計算計算用戶相似度的准確度很低。
演算法步驟:
1)得到共現矩陣 ;
2)計算 任意兩列 物品相似度,得到物品相似度矩陣 ;
3)對於有正負反饋的,獲得用戶 正反饋的物品;
4)找出用戶 正反饋的物品最相似的 個物品,組成相似物品集合;——召回階段
5)利用相似度分值對相似物品集合進行排序,生產推薦列表。——排序階段
最簡單情況下一個物品(用戶未接觸的)只出現在另一個物品(用戶已反饋的)的最相似集合中,那麼每個用戶對每個物品的得分就是相似度。如果一個物品和多個物品最相似怎麼辦?
如用戶正反饋的是 和 ,對於物品 其最相似的是 ,相似度為0.7,對於物品 其最相似的也是 ,相似度為0.6,那麼 相似度為:
也就是說:如果一個物品出現在多個物品的 個最相似的物品集合中,那麼該物品的相似度為多個相似度乘以對應評分的累加。
其中, 是物品p與物品h的相似度, 是用戶u對物品p的評分。
第2步中,怎麼計算物品相似度?——使用共現矩陣的列
以餘弦相似度為標准,計算 和 之間的相似度:
餘弦相似度
皮爾遜相關系數
基於皮爾遜相關系數的改進
UserCF適用於用戶興趣比較分散變換較快的場景,如新聞推薦。
IteamCF適用於用戶情趣不叫穩定的場景,如電商推薦。
優點:直觀,可解釋性強。
缺點:
『伍』 推薦演算法簡介
寫在最前面:本文內容主要來自於書籍《推薦系統實踐》和《推薦系統與深度學習》。
推薦系統是目前互聯網世界最常見的智能產品形式。從電子商務、音樂視頻網站,到作為互聯網經濟支柱的在線廣告和新穎的在線應用推薦,到處都有推薦系統的身影。推薦演算法是推薦系統的核心,其本質是通過一定的方式將用戶和物品聯系起來,而不同的推薦系統利用了不同的方式。
推薦系統的主要功能是以個性化的方式幫助用戶從極大的搜索空間中快速找到感興趣的對象。因此,目前所用的推薦系統多為個性化推薦系統。個性化推薦的成功應用需要兩個條件:
在推薦系統的眾多演算法中,基於協同的推薦和基於內容的推薦在實踐中得到了最廣泛的應用。本文也將從這兩種演算法開始,結合時間、地點上下文環境以及社交環境,對常見的推薦演算法做一個簡單的介紹。
基於內容的演算法的本質是對物品內容進行分析,從中提取特徵,然後基於用戶對何種特徵感興趣來推薦含有用戶感興趣特徵的物品。因此,基於內容的推薦演算法有兩個最基本的要求:
下面我們以一個簡單的電影推薦來介紹基於內容的推薦演算法。
現在有兩個用戶A、B和他們看過的電影以及打分情況如下:
其中問好(?)表示用戶未看過。用戶A對《銀河護衛隊 》《變形金剛》《星際迷航》三部科幻電影都有評分,平均分為 4 .7 分 ( (5+4+5 ) / 3=4.7 );對《三生三世》《美人魚》《北京遇上西雅圖》三部愛情電影評分平均分為 2.3 分 ( ( 3十2+2 ) /3=2.3 )。現在需要給A推薦電影,很明顯A更傾向於科幻電影,因此推薦系統會給A推薦獨立日。而對於用戶B,通過簡單的計算我們可以知道更喜歡愛情電影,因此給其推薦《三生三世》。當然,在實際推薦系統中,預測打分比這更加復雜些,但是其原理是一樣的。
現在,我們可以將基於內容的推薦歸納為以下四個步驟:
通過上面四步就能快速構建一個簡單的推薦系統。基於內容的推薦系統通常簡單有效,可解釋性好,沒有物品冷啟動問題。但他也有兩個明顯的缺點:
最後,順便提一下特徵提取方法:對於某些特徵較為明確的物品,一般可以直接對其打標簽,如電影類別。而對於文本類別的特徵,則主要是其主題情感等,則些可以通過tf-idf或LDA等方法得到。
基於協同的演算法在很多地方也叫基於鄰域的演算法,主要可分為兩種:基於用戶的協同演算法和基於物品的協同演算法。
啤酒和尿布的故事在數據挖掘領域十分有名,該故事講述了美國沃爾瑪超市統計發現啤酒和尿布一起被購買的次數非常多,因此將啤酒和尿布擺在了一起,最後啤酒和尿布的銷量雙雙增加了。這便是一個典型的物品協同過濾的例子。
基於物品的協同過濾指基於物品的行為相似度(如啤酒尿布被同時購買)來進行物品推薦。該演算法認為,物品A和物品B具有很大相似度是因為喜歡物品A的用戶大都也喜歡物品B。
基於物品的協同過濾演算法主要分為兩步:
基於物品的協同過濾演算法中計算物品相似度的方法有以下幾種:
(1)基於共同喜歡物品的用戶列表計算。
此外,John S. Breese再其論文中還提及了IUF(Inverse User Frequence,逆用戶活躍度)的參數,其認為活躍用戶對物品相似度的貢獻應該小於不活躍的用戶,應該增加IUF參數來修正物品相似度的公式:
上面的公式只是對活躍用戶做了一種軟性的懲罰, 但對於很多過於活躍的用戶, 比如某位買了當當網80%圖書的用戶, 為了避免相似度矩陣過於稠密, 我們在實際計算中一般直接忽略他的興趣列表, 而不將其納入到相似度計算的數據集中。
(2)基於餘弦相似度計算。
(3)熱門物品的懲罰。
從上面(1)的相似度計算公式中,我們可以發現當物品 i 被更多人購買時,分子中的 N(i) ∩ N(j) 和分母中的 N(i) 都會增長。對於熱門物品,分子 N(i) ∩ N(j) 的增長速度往往高於 N(i),這就會使得物品 i 和很多其他的物品相似度都偏高,這就是 ItemCF 中的物品熱門問題。推薦結果過於熱門,會使得個性化感知下降。以歌曲相似度為例,大部分用戶都會收藏《小蘋果》這些熱門歌曲,從而導致《小蘋果》出現在很多的相似歌曲中。為了解決這個問題,我們對於物品 i 進行懲罰,例如下式, 當α∈(0, 0.5) 時,N(i) 越小,懲罰得越厲害,從而使熱門物品相關性分數下降( 博主註:這部分未充分理解 ):
此外,Kary pis在研究中發現如果將ItemCF的相似度矩陣按最大值歸一化, 可以提高推薦的准確率。 其研究表明, 如果已經得到了物品相似度矩陣w, 那麼可以用如下公式得到歸一化之後的相似度矩陣w':
歸一化的好處不僅僅在於增加推薦的准確度,它還可以提高推薦的覆蓋率和多樣性。一般來說,物品總是屬於很多不同的類,每一類中的物品聯系比較緊密。假設物品分為兩類——A和B, A類物品之間的相似度為0.5, B類物品之間的相似度為0.6, 而A類物品和B類物品之間的相似度是0.2。 在這種情況下, 如果一個用戶喜歡了5個A類物品和5個B類物品, 用ItemCF給他進行推薦, 推薦的就都是B類物品, 因為B類物品之間的相似度大。 但如果歸一化之後, A類物品之間的相似度變成了1, B類物品之間的相似度也是1, 那麼這種情況下, 用戶如果喜歡5個A類物品和5個B類物品, 那麼他的推薦列表中A類物品和B類物品的數目也應該是大致相等的。 從這個例子可以看出, 相似度的歸一化可以提高推薦的多樣性。
那麼,對於兩個不同的類,什麼樣的類其類內物品之間的相似度高,什麼樣的類其類內物品相似度低呢?一般來說,熱門的類其類內物品相似度一般比較大。如果不進行歸一化,就會推薦比較熱門的類裡面的物品,而這些物品也是比較熱門的。因此,推薦的覆蓋率就比較低。相反,如果進行相似度的歸一化,則可以提高推薦系統的覆蓋率。
最後,利用物品相似度矩陣和用戶打過分的物品記錄就可以對一個用戶進行推薦評分:
基於用戶的協同演算法與基於物品的協同演算法原理類似,只不過基於物品的協同是用戶U購買了A物品,會計算經常有哪些物品與A一起購買(也即相似度),然後推薦給用戶U這些與A相似的物品。而基於用戶的協同則是先計算用戶的相似性(通過計算這些用戶購買過的相同的物品),然後將這些相似用戶購買過的物品推薦給用戶U。
基於用戶的協同過濾演算法主要包括兩個步驟:
步驟(1)的關鍵是計算用戶的興趣相似度,主要是利用用戶的行為相似度計算用戶相似度。給定用戶 u 和 v,N(u) 表示用戶u曾經有過正反饋(譬如購買)的物品集合,N(v) 表示用戶 v 曾經有過正反饋的物品集合。那麼我們可以通過如下的 Jaccard 公式簡單的計算 u 和 v 的相似度:
或通過餘弦相似度:
得到用戶之間的相似度之後,UserCF演算法會給用戶推薦和他興趣最相似的K個用戶喜歡的物品。如下的公式度量了UserCF演算法中用戶 u 對物品 i 的感興趣程度:
首先回顧一下UserCF演算法和ItemCF演算法的推薦原理:UserCF給用戶推薦那些和他有共同興趣愛好的用戶喜歡的物品, 而ItemCF給用戶推薦那些和他之前喜歡的物品具有類似行為的物品。
(1)從推薦場景考慮
首先從場景來看,如果用戶數量遠遠超過物品數量,如購物網站淘寶,那麼可以考慮ItemCF,因為維護一個非常大的用戶關系網是不容易的。其次,物品數據一般較為穩定,因此物品相似度矩陣不必頻繁更新,維護代價較小。
UserCF的推薦結果著重於反應和用戶興趣相似的小群體的熱點,而ItemCF的推薦結果著重於維系用戶的歷史興趣。換句話說,UserCF的推薦更社會化,反應了用戶所在小型興趣群體中物品的熱門程度,而ItemCF的推薦更加個性化,反應了用戶自己的個性傳承。因此UserCF更適合新聞、微博或微內容的推薦,而且新聞內容更新頻率非常高,想要維護這樣一個非常大而且更新頻繁的表無疑是非常難的。
在新聞類網站中,用戶的興趣愛好往往比較粗粒度,很少會有用戶說只看某個話題的新聞,而且往往某個話題也不是每天都會有新聞。 個性化新聞推薦更強調新聞熱點,熱門程度和時效性是個性化新聞推薦的重點,個性化是補充,所以 UserCF 給用戶推薦和他有相同興趣愛好的人關注的新聞,這樣在保證了熱點和時效性的同時,兼顧了個性化。
(2)從系統多樣性(也稱覆蓋率,指一個推薦系統能否給用戶提供多種選擇)方面來看,ItemCF的多樣性要遠遠好於UserCF,因為UserCF更傾向於推薦熱門物品。而ItemCF具有較好的新穎性,能夠發現長尾物品。所以大多數情況下,ItemCF在精度上較小於UserCF,但其在覆蓋率和新穎性上面卻比UserCF要好很多。
在介紹本節基於矩陣分解的隱語義模型之前,讓我們先來回顧一下傳統的矩陣分解方法SVD在推薦系統的應用吧。
基於SVD矩陣分解在推薦中的應用可分為如下幾步:
SVD在計算前會先把評分矩陣 A 缺失值補全,補全之後稀疏矩陣 A 表示成稠密矩陣,然後將分解成 A' = U∑V T 。但是這種方法有兩個缺點:(1)補成稠密矩陣後需要耗費巨大的儲存空間,對這樣巨大的稠密矩陣進行儲存是不現實的;(2)SVD的計算復雜度很高,對這樣大的稠密矩陣中進行計算式不現實的。因此,隱語義模型就被發明了出來。
更詳細的SVD在推薦系統的應用可參考 奇異值分解SVD簡介及其在推薦系統中的簡單應用 。
隱語義模型(Latent Factor Model)最早在文本挖掘領域被提出,用於找到文本的隱含語義。相關的演算法有LSI,pLSA,LDA和Topic Model。本節將對隱語義模型在Top-N推薦中的應用進行詳細介紹,並通過實際的數據評測該模型。
隱語義模型的核心思想是通過隱含特徵聯系用戶興趣和物品。讓我們通過一個例子來理解一下這個模型。
現有兩個用戶,用戶A的興趣涉及偵探小說、科普圖書以及一些計算機技術書,而用戶B的興趣比較集中在數學和機器學習方面。那麼如何給A和B推薦圖書呢?
我們可以對書和物品的興趣進行分類。對於某個用戶,首先得到他的興趣分類,然後從分類中挑選他可能喜歡的物品。簡言之,這個基於興趣分類的方法大概需要解決3個問題:
對於第一個問題的簡單解決方案是找相關專業人員給物品分類。以圖書為例,每本書出版時,編輯都會給出一個分類。但是,即使有很系統的分類體系,編輯給出的分類仍然具有以下缺點:(1)編輯的意見不能代表各種用戶的意見;(2)編輯很難控制分類的細粒度;(3)編輯很難給一個物品多個分類;(4)編輯很難給一個物品多個分類;(5)編輯很難給出多個維度的分類;(6)編輯很難決定一個物品在某一個類別中的權重。
為了解決上述問題,研究員提出可以從數據出發,自動找到那些分類,然後進行個性化推薦。隱語義模型由於採用基於用戶行為統計的自動聚類,較好地解決了上面提出的5個問題。
LFM將矩陣分解成2個而不是3個:
推薦系統中用戶和物品的交互數據分為顯性反饋和隱性反饋數據。隱式模型中多了一個置信參數,具體涉及到ALS(交替最小二乘法,Alternating Least Squares)中對於隱式反饋模型的處理方式——有的文章稱為「加權的正則化矩陣分解」:
一個小細節:在隱性反饋數據集中,只有正樣本(正反饋)沒有負反饋(負樣本),因此如何給用戶生成負樣本來進行訓練是一個重要的問題。Rong Pan在其文章中對此進行了探討,對比了如下幾種方法:
用戶行為很容易用二分圖表示,因此很多圖演算法都可以應用到推薦系統中。基於圖的模型(graph-based model)是推薦系統中的重要內容。很多研究人員把基於領域的模型也稱為基於圖的模型,因為可以把基於領域的模型看作基於圖的模型的簡單形式。
在研究基於圖的模型之前,需要將用戶行為數據表示成圖的形式。本節的數據是由一系列用戶物品二元組 (u, i) 組成的,其中 u 表示用戶對物品 i 產生過行為。
令 G(V, E) 表示用戶物品二分圖,其中 V=V U UV I 由用戶頂點 V U 和物品節點 V I 組成。對於數據集中每一個二元組 (u, i) ,圖中都有一套對應的邊 e(v u , v i ),其中 v u ∈V U 是用戶對應的頂點,v i ∈V I 是物品i對應的頂點。如下圖是一個簡單的物品二分圖,其中圓形節點代表用戶,方形節點代表物品,用戶物品的直接連線代表用戶對物品產生過行為。比如下圖中的用戶A對物品a、b、d產生過行為。
度量圖中兩個頂點之間相關性的方法很多,但一般來說圖中頂點的相關性主要取決於下面3個因素:
而相關性高的一對頂點一般具有如下特徵:
舉個例子,如下圖,用戶A和物品c、e沒有邊直連,但A可通過一條長度為3的路徑到達c,而Ae之間有兩條長度為3的路徑。那麼A和e的相關性要高於頂點A和c,因而物品e在用戶A的推薦列表中應該排在物品c之前,因為Ae之間有兩條路徑。其中,(A,b,C,e)路徑經過的頂點的出度為(3,2,2,2),而 (A,d,D,e) 路徑經過了一個出度比較大的頂點D,所以 (A,d,D,e) 對頂點A與e之間相關性的貢獻要小於(A,b,C,e)。
基於上面3個主要因素,研究人員設計了很多計算圖中頂點相關性的方法,本節將介紹一種基於隨機遊走的PersonalRank演算法。
假設要給用戶u進行個性化推薦,可以從用戶u對應的節點 v u 開始在用戶物品二分圖上進行隨機遊走。遊走到任一節點時,首先按照概率α決定是繼續遊走還是停止這次遊走並從 v u 節點重新開始遊走。若決定繼續遊走,則從當前節點指向的節點中按照均勻分布隨機選擇一個節點作為遊走下次經過的節點。這樣,經過很多次隨機遊走後,每個物品被訪問到的概率會收斂到一個數。最終的推薦列表中物品的權重就是物品節點的訪問概率。
上述演算法可以表示成下面的公式:
雖然通過隨機遊走可以很好地在理論上解釋PersonalRank演算法,但是該演算法在時間復雜度上有明顯的缺點。因為在為每個用戶進行推薦時,都需要在整個用戶物品二分圖上進行迭代,知道所有頂點的PR值都收斂。這一過程的時間復雜度非常高,不僅無法在線進行實時推薦,離線計算也是非常耗時的。
有兩種方法可以解決上面PersonalRank時間復雜度高的問題:
(1)減少迭代次數,在收斂之前停止迭代。但是這樣會影響最終的精度。
(2)從矩陣論出發,重新涉及演算法。另M為用戶物品二分圖的轉移概率矩陣,即:
網路社交是當今社會非常重要甚至可以說是必不可少的社交方式,用戶在互聯網上的時間有相當大的一部分都用在了社交網路上。
當前國外最著名的社交網站是Facebook和Twitter,國內的代表則是微信/QQ和微博。這些社交網站可以分為兩類:
需要指出的是,任何一個社交網站都不是單純的社交圖譜或興趣圖譜。如QQ上有些興趣愛好群可以認識不同的陌生人,而微博中的好友也可以是現實中認識的。
社交網路定義了用戶之間的聯系,因此可以用圖定義社交網路。我們用圖 G(V,E,w) 定義一個社交網路,其中V是頂點集合,每個頂點代表一個用戶,E是邊集合,如果用戶va和vb有社交網路關系,那麼就有一條邊 e(v a , v b ) 連接這兩個用戶,而 w(v a , v b )定義了邊的權重。一般來說,有三種不同的社交網路數據:
和一般購物網站中的用戶活躍度分布和物品流行度分布類似,社交網路中用戶的入度(in degree,表示有多少人關注)和出度(out degree,表示關注多少人)的分布也是滿足長尾分布的。即大部分人關注的人都很少,被關注很多的人也很少。
給定一個社交網路和一份用戶行為數據集。其中社交網路定義了用戶之間的好友關系,而用戶行為數據集定義了不同用戶的歷史行為和興趣數據。那麼最簡單的演算法就是給用戶推薦好友喜歡的物品集合。即用戶u對物品i的興趣 p ui 可以通過如下公式計算。
用戶u和用戶v的熟悉程度描述了用戶u和用戶在現實社會中的熟悉程度。一般來說,用戶更加相信自己熟悉的好友的推薦,因此我們需要考慮用戶之間的熟悉度。下面介紹3中衡量用戶熟悉程度的方法。
(1)對於用戶u和用戶v,可以使用共同好友比例來計算他們的相似度:
上式中 out(u) 可以理解為用戶u關注的用戶合集,因此 out(u) ∩ out(v) 定義了用戶u、v共同關注的用戶集合。
(2)使用被關注的用戶數量來計算用戶之間的相似度,只要將公式中的 out(u) 修改為 in(u):
in(u) 是指關注用戶u的集合。在無向社交網路中,in(u)和out(u)是相同的,而在微博這種有向社交網路中,這兩個集合的含義就不痛了。一般來說,本方法適合用來計算微博大V之間的相似度,因為大v往往被關注的人數比較多;而方法(1)適用於計算普通用戶之間的相似度,因為普通用戶往往關注行為比較豐富。
(3)除此之外,還可以定義第三種有向的相似度:這個相似度的含義是用戶u關注的用戶中,有多大比例也關注了用戶v:
這個相似度有一個缺點,就是在該相似度下所有人都和大v有很大的相似度,這是因為公式中的分母並沒有考慮 in(v) 的大小,所以可以把 in(v) 加入到上面公式的分母,來降低大v與其他用戶的相似度:
上面介紹了3種計算用戶之間相似度(或稱熟悉度)的計算方法。除了熟悉程度,還需要考慮用戶之間的興趣相似度。我們和父母很熟悉,但很多時候我們和父母的興趣確不相似,因此也不會喜歡他們喜歡的物品。因此,在度量用戶相似度時,還需要考慮興趣相似度,而興趣相似度可以通過和UserCF類似的方法度量,即如果兩個用戶喜歡的物品集合重合度很高,兩個用戶的興趣相似度很高。
最後,我們可以通過加權的形式將兩種權重合並起來,便得到了各個好有用戶的權重了。
有了權重,我們便可以針對用戶u挑選k個最相似的用戶,把他們購買過的物品中,u未購買過的物品推薦給用戶u即可。打分公式如下:
其中 w' 是合並後的權重,score是用戶v對物品的打分。
node2vec的整體思路分為兩個步驟:第一個步驟是隨機遊走(random walk),即通過一定規則隨機抽取一些點的序列;第二個步驟是將點的序列輸入至word2vec模型從而得到每個點的embedding向量。
隨機遊走在前面基於圖的模型中已經介紹過,其主要分為兩步:(1)選擇起始節點;(2)選擇下一節點。起始節點選擇有兩種方法:按一定規則抽取一定量的節點或者以圖中所有節點作為起始節點。一般來說會選擇後一種方法以保證所有節點都會被選取到。
在選擇下一節點方法上,最簡單的是按邊的權重來選擇,但在實際應用中需要通過廣度優先還是深度優先的方法來控制遊走范圍。一般來說,深度優先發現能力更強,廣度優先更能使社區內(較相似)的節點出現在一個路徑里。
斯坦福大學Jure Leskovec教授給出了一種可以控制廣度優先或者深度優先的方法。
以上圖為例,假設第一步是從t隨機遊走到v,這時候我們要確定下一步的鄰接節點。本例中,作者定義了p和q兩個參數變數來調節遊走,首先計算其鄰居節點與上一節點t的距離d,根據下面的公式得到α:
一般從每個節點開始遊走5~10次,步長則根據點的數量N遊走根號N步。如此便可通過random walk生成點的序列樣本。
得到序列之後,便可以通過word2vec的方式訓練得到各個用戶的特徵向量,通過餘弦相似度便可以計算各個用戶的相似度了。有了相似度,便可以使用基於用戶的推薦演算法了。
推薦系統需要根據用戶的歷史行為和興趣預測用戶未來的行為和興趣,因此大量的用戶行為數據就成為推薦系統的重要組成部分和先決條件。如何在沒有大量用戶數據的情況下設計個性化推薦系統並且讓用戶對推薦結果滿意從而願意使用推薦系統,就是冷啟動問題。
冷啟動問題主要分為三類:
針對用戶冷啟動,下面給出一些簡要的方案:
(1)有效利用賬戶信息。利用用戶注冊時提供的年齡、性別等數據做粗粒度的個性化;
(2)利用用戶的社交網路賬號登錄(需要用戶授權),導入用戶在社交網站上的好友信息,然後給用戶推薦其好友喜歡的物品;
(3)要求用戶在登錄時對一些物品進行反饋,手機用戶對這些物品的興趣信息,然後給用推薦那些和這些物品相似的物品;
(4)提供非個性化推薦。非個性化推薦的最簡單例子就是熱門排行榜,我們可以給用戶推薦熱門排行榜,然後等到用戶數據收集到一定的時候,在切換為個性化推薦。
對於物品冷啟動,可以利用新加入物品的內容信息,將它們推薦給喜歡過和他們相似的物品的用戶。
對於系統冷啟動,可以引入專家知識,通過一定高效的方式快速建立起物品的相關度表。
在上面介紹了一些推薦系統的基礎演算法知識,這些演算法大都是比較經典且現在還在使用的。但是需要注意的是,在實踐中,任何一種推薦演算法都不是單獨使用的,而是將多種推薦演算法結合起來,也就是混合推薦系統,但是在這里並不準備介紹,感興趣的可以查閱《推薦系統》或《推薦系統與深度學習》等書籍。此外,在推薦中非常重要的點擊率模型以及基於矩陣的一些排序演算法在這里並沒有提及,感興趣的也可自行學習。
雖然現在用的很多演算法都是基於深度學習的,但是這些經典演算法能夠讓我們對推薦系統的發展有一個比較好的理解,同時,更重要的一點——「推陳出新」,只有掌握了這些經典的演算法,才能提出或理解現在的一些更好地演算法。
『陸』 協同過濾(2): KDD2020- HyperGraph CF 基於超圖
協同過濾推薦系統是當今眾多推薦系統中最流行和最重要的推薦方法之一。
盡管已經被廣泛採用,但是現有的基於 cf 的方法,從矩陣分解到新興的基於圖的方法, 在訓練數據非常有限的情況下表現不佳 (數據稀疏問題)。
本文首先指出了造成這種不足的根本原因,並指出現有基於 CF 的方法固有的兩個缺點,即: 1)用戶和物品建模不靈活; 2)高階相關性建模不足。
在這種情況下,文中提出了一個雙通道超圖協同過濾(DHCF)框架來解決上述問題。
首先,引入 雙通道學習策略 (Dual-Channel),全面利用分治策略,學慣用戶和物品的表示,使這兩種類型的數據可以優雅地相互連接,同時保持其特定屬性。
其次, 利用超圖結構對用戶和具有顯式混合高階相關性的物品進行建模 。提出了跳躍超圖卷積(JHConv)方法,實現高階關系嵌入的顯式和有效傳播。
推薦系統的核心是一系列的推薦演算法,這些演算法能夠**根據用戶的個人特徵有效地從爆炸式信息篩選出信息。協同過濾是目前最受歡迎和廣泛採用的方法之一。
CF 持有一個基本的假設,當向用戶提供推薦時: 那些行為相似的人(例如,經常訪問同一個網站)很可能在物品(例如,音樂、視頻、網站)上分享相似的偏好。
為了實現這一點,一個典型的基於 CFbased 方法執行一個兩步策略: 它首先利用歷史交互區分相似的用戶和項目; 然後基於上面收集的信息,向特定用戶生成推薦。
現有的 CF 方法可以分為三類。
雖然 CF 方法已經研究了多年,但仍然存在局限性,特別是在訓練的先驗知識非常有限的情況下。為了理解這些缺陷,深入挖掘現有 CF 方法的內在機製得到以下局限性:
基於這些生成的連接組,即超邊,可以分別為用戶和物品構造兩個超圖,即兩個通道的表示。本文提出了一種新的跳躍超圖卷積演算法(JHConv) ,該演算法通過聚合鄰域的嵌入並引入先驗信息,有效地在超圖上進行信息傳播。(與傳統的基於圖的方法對比,用戶超圖和項目超圖,可以更靈活地進行復雜的數據關聯建模,並與不同類型的數據結合。)
超圖定義為 ,V表示圖節點, 表示超邊集合,超圖鄰接矩陣 描述節點與超邊的關系
在高層次上,DHCF 首先通過一個雙通道超圖框架學慣用戶和物品的兩組嵌入,在此框架上,DHCF 通過計算用戶和物品嵌入查找表的內積,進一步計算出用戶-項目偏好矩陣。基於這樣的偏好矩陣,DHCF 估計用戶對某個商品感興趣的可能性。
總體分為三步:
構建用戶和物品嵌入矩陣:
為了在預定義的混合高階關繫上聚合相鄰消息,執行以下高階消息傳遞:
為了提取有區別的信息,我們對用戶和物品定義為
綜上所述,上述兩個過程構成了一個集成的DHCF 層,允許對用戶和物品進行明確的建模和編碼,並通過強大的嵌入功能進一步更新和生成更精確的嵌入超圖結構。這種精細嵌入可以進一步應用於推薦系統中的各種下游任務。
與 傳統 HGNNConv 相比,JHConv 允許模型同時考慮其原始特徵和聚合相關表示,在另一方面,這樣的 resnet結構的跳躍連接使模型能夠避免由於集成了許多其他連接而導致的信息稀釋。
引入高階關聯來實現構建超邊,根據自定義的規則分別對用戶和物品進行高階關聯提取
定義1: 物品的 k 階可達鄰居。在用戶-物品交互圖,更具體地說是二部圖中,如果在 itemi 和 itemj 之間存在一個相鄰頂點序列(即一條路) ,且該路徑中的用戶數小於 k,itemi (itemj)是 itemi (itemi)的 k 階可達鄰居。
定義2: 物品的 k階可達用戶。在物品-用戶二部圖中,如果用戶 j 和物品 k 之間存在直接交互作用,則用戶 j 是 itemi 的 k 階可達鄰居,而物品 k 是 itemi 的 k 階可達鄰居。
對於 itemi,其 k 階可達用戶集稱為 。從數學上講,超圖可以定義在一個集簇上,其中每個集代表一個超邊。因此,這里可以通過物品的 k 階可達用戶集構建超邊。
然後在用戶 k 階可達規則的基礎上構造高階超邊組,該超邊組可表示為:
假設通過K階可達規則,構造a個超邊組,最後的超圖需要將這a個超邊組做融合,見上面的總體框架中的描述。
同理,按照相似的K階可達的規則,對物品進行分析,構成物品的超邊(N個用戶,M個物品)
在實驗中,每個用戶觀察到的交互中的10% 被隨機選擇用於訓練,其餘的數據用於測試。這樣的設置增加了 CF 任務的難度,因為模型只能獲取非常有限的觀察到的交互。此外,由於數據的高度稀疏性,它可以很好地評價模型從有限的隱式數據集中挖掘有用信息的能力。對於所有四個數據集,每個用戶至少有兩個用於訓練的交互。
這篇工作基於超圖結構,提出了一種新的CF框架,與基於圖神經網路的CF相比,超圖結構更符合實際情況;此外,雙通道的思路也值得借鑒,之前也分析的一篇雙通道BPR的論文。近年來,基於圖神經網路的推薦已經成為研究主流,而其中超圖相關的工作少之又少,最近看到的另一篇是SIGIR2020上的一篇Next Item Recommendation with Sequential Hypergraphs,在超圖神經網路上並沒多大的改進,重點仍然在於如何用這種結構去解決存在的問題。
如果覺得有用,歡迎點贊關注贊賞,若對推薦感興趣歡迎評論區/私信交流~~~
『柒』 基於用戶協同過濾(User-CF)的推薦演算法
1. 數學必備知識(向量)
2. 構建矩陣模型
3. User-CF的思想和計算
在一個個性化推薦系統中,當一個用戶A需要個性化推薦時,可以先找和他有相似興趣的其他用戶,然後把那些用戶喜歡的、而用戶A沒有聽說過的物品推薦給A。這種方法成為基於用戶的協同過濾演算法(User-CF)
根據問題域中構建出來的用戶-行為評分矩陣(圖1-1),我們可以構建出用戶的向量.首先,把每一個用戶用一個向量表示,每個向量里有6個數字,分別代表該用戶對6本書喜愛程度的評分.0代表用戶沒看過這本書.圖示:
接下來,計算倆個用戶的相似性,這里使用的指標叫作餘弦相似度,計算公式如下:
其中,分子部分a·b表示兩個向量的點積,計算方法就是兩個向量對應元素先相乘再求和,比如:
用戶a=[4 3 0 0 5 0]和用戶b=[5 0 4 0 4 0]
a·b=4x5+3x0+0x4+0x0+5x4+0x0=40
分母部分的 代表向量a的模長, 就是a,b兩個向量模長的乘積.向量模長的計算方法就是把向量
中的每個元素平方後再求和最後再開根號.
於是,第一個用戶和第二個用戶的相似度就可以進行如下計算:
餘弦相似度的值在[0,1]閉區間內,值越大說明越相似,值越小說明越不相似.根據上面的計算公式,分別計算小白和其他5個同事的相似度,然後根據從大到小的順序排列.可以看到小白和前倆個同事相似度高而和最後一個同事完全不相似.
比如,和小白最相似的兩個同事的閱讀列表編號有1,3,4,5共4本書.其中1,5這兩本書小白已經看過,3,4這兩本書哪本可能更適合小白的口味呢?
可以計算這兩個同事對這兩本書的加權評分並作為小白的可能評分,權重就是他們之間的相似度,具體計算如
下圖.通過計算可以看出編號為3的書可能更適合小白的口味.
計算步驟:
1. 先確定第一個同事擁有的閱讀列表的圖書編號為1,3,5
2. 再確定第二個同事擁有的閱讀列表的圖書編號為1,3,4,5
3. 小白自己已經擁有的閱讀的圖書列表是1,2,5[這也是打叉的意義,自己已經有的,不需要再推薦給自己了]
4. 最後剩餘的只有編號為3和編號為4的兩本書了
5. 計算公式說明,0.75和0.63代表權重,也就是相似值.4,3,5代表的是該用戶對這本書的評分.
1. 性能:適用於用戶較少的場合,如果用戶過多,計算用戶相似度矩陣的代價較大
2. 領域:實效性要求高,用戶個性化興趣要求不高
3. 實時性:用戶有新行為,不一定需要推薦結果立即變化
4. 冷啟動:在新用戶對少的物品產生行為後,不能立即對他進行個性化推薦,因為用戶相似度是離線計算的
新物品上線後一段時間,一旦有用戶對物品產生行為,就可以將新物品推薦給其他用戶
『捌』 協同過濾演算法
用戶行為數據在網站上最簡單的存在形式就是日誌,比如用戶在電子商務網站中的網頁瀏覽、購買、點擊、評分和評論等活動。 用戶行為在個性化推薦系統中一般分兩種——顯性反饋行為(explicit feedback)和隱性反饋 行為(implicit feedback)。顯性反饋行為包括用戶明確表示對物品喜好的行為。網站中收集顯性反饋的主要方式就是評分和喜歡/不喜歡。隱性反饋行為指的是那些不能明確反應用戶喜好 的行為。最具代表性的隱性反饋行為就是頁面瀏覽行為。 按照反饋的明確性分,用戶行為數據可以分為顯性反饋和隱性反饋,但按照反饋的方向分, 又可以分為正反饋和負反饋。正反饋指用戶的行為傾向於指用戶喜歡該物品,而負反饋指用戶的 行為傾向於指用戶不喜歡該物品。在顯性反饋中,很容易區分一個用戶行為是正反饋還是負反饋, 而在隱性反饋行為中,就相對比較難以確定。
在利用用戶行為數據設計推薦演算法之前,研究人員首先需要對用戶行為數據進行分析,了解 數據中蘊含的一般規律,這樣才能對演算法的設計起到指導作用。
(1) 用戶活躍度和物品流行度
(2) 用戶活躍度和物品流行度的關系
一般認為,新用戶傾向於瀏覽熱門的物品,因為他 們對網站還不熟悉,只能點擊首頁的熱門物品,而老用戶會逐漸開始瀏覽冷門的物品。如果用橫坐標表示用戶活躍度,縱坐標表示具有某個活躍度的所有用戶評過分的物品的平均流行度。圖中曲線呈明顯下 降的趨勢,這表明用戶越活躍,越傾向於瀏覽冷門的物品。
僅僅基於用戶行為數據設計的推薦演算法一般稱為協同過濾演算法。學術界對協同過濾演算法進行了深入研究,提出了很多方法,比如基於鄰域的方法(neighborhood-based)、隱語義模型 (latent factor model)、基於圖的隨機遊走演算法(random walk on graph)等。在這些方法中, 最著名的、在業界得到最廣泛應用的演算法是基於鄰域的方法,而基於鄰域的方法主要包含下面兩種演算法。
基於用戶的協同過濾演算法 :這種演算法給用戶推薦和他興趣相似的其他用戶喜歡的物品
基於物品的協同過濾演算法: 這種演算法給用戶推薦和他之前喜歡的物品相似的物品
基於鄰域的演算法是推薦系統中最基本的演算法,該演算法不僅在學術界得到了深入研究,而且在 業界得到了廣泛應用。基於鄰域的演算法分為兩大類,一類是基於用戶的協同過濾演算法,另一類是 基於物品的協同過濾演算法。現在我們所說的協同過濾,基本上就就是指基於用戶或者是基於物品的協同過濾演算法,因此,我們可以說基於鄰域的演算法即是我們常說的協同過濾演算法
(1) 基於用戶的協同過濾演算法(UserCF)
基於用戶的協同過濾演算法的基本思想是:在一個在線個性化推薦系統中,當一個用戶A需要個性化推薦 時,可以先找到和他有相似興趣的其他用戶,然後把那些用戶喜歡的、而用戶A沒有聽說過的物品推薦給A。
Ø 從上面的描述中可以看到,基於用戶的協同過濾演算法主要包括兩個步驟。 第一步:找到和目標用戶興趣相似的用戶集合。 第二步: 找到這個集合中的用戶喜歡的,且目標用戶沒有聽說過的物品推薦給目標用戶。
這里,步驟1的關鍵是計算兩個用戶的興趣相似度,協同過濾演算法主要利用行為的相似度計算興趣的相似度。給定用戶u和用戶v,令N(u)表示用戶u曾經有過正反饋的物品集合,令N(v) 為用戶v曾經有過正反饋的物品集合。那麼我們可以通過以下方法計算用戶的相似度:
基於餘弦相似度
(2) 基於物品的協同過濾演算法(itemCF)
與UserCF同理
(3) UserCF和itemCF的比 較
首先我們提出一個問題,為什麼新聞網站一般使用UserCF,而圖書、電商網站一般使用ItemCF呢? 首先回顧一下UserCF演算法和ItemCF演算法的推薦原理。UserCF給用戶推薦那些和他有共同興 趣愛好的用戶喜歡的物品,而ItemCF給用戶推薦那些和他之前喜歡的物品類似的物品。從這個算 法的原理可以看到,UserCF的推薦結果著重於反映和用戶興趣相似的小群體的熱點,而ItemCF 的推薦結果著重於維系用戶的歷史興趣。換句話說,UserCF的推薦更社會化,反映了用戶所在的小型興趣群體中物品的熱門程度,而ItemCF的推薦更加個性化,反映了用戶自己的興趣傳承。 在新聞網站中,用戶的興趣不是特別細化,絕大多數用戶都喜歡看熱門的新聞。個性化新聞推薦更加強調抓住 新聞熱點,熱門程度和時效性是個性化新聞推薦的重點,而個性化相對於這兩點略顯次要。因 此,UserCF可以給用戶推薦和他有相似愛好的一群其他用戶今天都在看的新聞,這樣在抓住熱 點和時效性的同時,保證了一定程度的個性化。同時,在新聞網站中,物品的更新速度遠遠快於新用戶的加入速度,而且 對於新用戶,完全可以給他推薦最熱門的新聞,因此UserCF顯然是利大於弊。
但是,在圖書、電子商務和電影網站,比如亞馬遜、豆瓣、Netflix中,ItemCF則能極大地發 揮優勢。首先,在這些網站中,用戶的興趣是比較固定和持久的。一個技術人員可能都是在購買 技術方面的書,而且他們對書的熱門程度並不是那麼敏感,事實上越是資深的技術人員,他們看 的書就越可能不熱門。此外,這些系統中的用戶大都不太需要流行度來輔助他們判斷一個物品的 好壞,而是可以通過自己熟悉領域的知識自己判斷物品的質量。因此,這些網站中個性化推薦的 任務是幫助用戶發現和他研究領域相關的物品。因此,ItemCF演算法成為了這些網站的首選演算法。 此外,這些網站的物品更新速度不會特別快,一天一次更新物品相似度矩陣對它們來說不會造成 太大的損失,是可以接受的。同時,從技術上考慮,UserCF需要維護一個用戶相似度的矩陣,而ItemCF需要維護一個物品 相似度矩陣。從存儲的角度說,如果用戶很多,那麼維護用戶興趣相似度矩陣需要很大的空間, 同理,如果物品很多,那麼維護物品相似度矩陣代價較大
下表是對二者的一個全面的表較: