『壹』 个性化推荐算法——协同过滤
有三种:协同过滤
用户历史行为
物品相似矩阵
『贰』 协同过滤与分类
[TOC]
本文是《写给程序员的数据挖掘实践指南》的一周性笔记总结。主要涵盖了以下内容:
所谓推荐系统就是系统根据你的行为操作为你推荐你可能想要的其他物品。这在电商平台、音乐平台、资讯推送平台等多有见到。而协同过滤简单来说是利用某兴趣相投、拥有共同经验之群体的喜好来推荐用户感兴趣的信息,个人通过合作的机制给予信息相当程度的回应(如评分)并记录下来以达到过滤的目的进而帮助别人筛选信息。其推荐基础是用户评分。这里可以分为两种用户评分,即显式评分与隐式评分。显式评分即日常见到的为物品打分,如对喜好音乐评级等;隐式评分是通过对用户行为的持续性观察,进而发现用户偏好的一种方法,如新闻网页中的推送你经常阅读过的相关内容等。两种评分方法都有自己的问题。
总体来说,协同过滤其运作机制也可以分为两种:
基于用户的推荐是指通过用户的行为偏好,划分相似用户。在相似用户群体之间互相推送一方喜欢而另一方未有过的物品。核心在于相似用户群体的划分。这种推荐方法有自己的局限:
基于用户的过滤其核心是用户群体的划分,其实也就是分类。
这里的距离函数包括三种:曼哈顿距离和欧氏距离。这里以二维举例,更多维情况下类推即可。
两距离函数可以一般化为:
其中,当r=1时,函数为曼哈顿距离;当r=2时,函数为欧氏距离。
算法实现:
在算出距离函数后,通过比对目标用户与所有用户群体的偏好,找到最近邻的用户并给予推荐。
基于用户距离的推荐有一个明显的问题,就是用户评分体系的差异。比如评分极端的用户给喜欢的评最高分,给不喜欢的评最低分;而有些用户倾向于不出现极端评分。即所谓“分数贬值”( Grade Inflation )问题。这种问题的存在可能让基于距离的评分产生偏差。皮尔逊相关系数可以缓解这种问题。
原皮尔逊相关系数公式在实际运用的时候会出现多次迭代的问题,影响计算效率,这里给出了近似公式:
皮尔逊相关系数的用户判断依据不是单纯的用户距离,而是用户的评分一致性:取值在[-1, 1]之间,越接近1则表示两用户的评分一致性越好;反之则反。
python实现:
基于用户推荐的过程中,另一个存在的问题就是由于大部分人的喜爱物品集合的交集过少,存在大量计算值为0的feature的情况。即所谓 稀疏性 问题。一个较容易理解的例子是对书本内容的挖掘。余弦相似度会忽略这种0-0匹配。
余弦相似度:
python实现:
如此多的评估系数,如何进行抉择呢?根据数据特征:
另外值得考虑的一点是,目前为止的推荐都是基于单用户的。即对一个用户的推荐系统只是基于另一个用户。这会存在一些问题。比如虽然虽然两者相似度很高,但是另外一个人有一些怪癖,怪癖的推荐就是不合理的;又比如,在相似度极高的情况下,你不能确定统一账户下的操作是同一个人做出的或者说操作行为是为了用户自身。比如用户考虑购买某件商品作为礼物送给别人,这就是基于别人喜好的购买行为,这种推荐也是不合适的。
对这种问题的解决可以使用群体划分的方法。原理与单用户类似,但是用户的匹配是k个。在这k位最优匹配的用户之间,以相似度的大小为依据设定权重作为物品推荐的条件。此即协同过滤的k近邻。
正如前面提到的基于用户的推荐有复杂度、稀疏性的问题,而基于物品的过滤则可以缓解这些问题。所谓基于物品的过滤是指,我们事先找到最相似的物品,并结合用户对物品的评级结果来生成推荐。前提是要对物品进行相似度匹配,找到一种算法。
这里的调整是指为了减轻用户评分体系的不一致情况(抵消分数贬值),从每个评级结果中减去该用户所有物品的平均分的评级结果。
其中,U表示所有同时对i, j进行评级过的用户的集合。 表示用户u给物品i的评分减去用户u对所有物品的评分的平均值。
在得到所有物品的余弦相似度后,我们就可以通过该指数预测用户对某件物品的偏好程度。方法就是所有相似物品的相似度乘以得分的总和。
其中p(u, i)指的是用户u对物品i评分的预测值。N是用户u的所有评级物品中每个和i得分相似的物品。这里的相似指的是矩阵中存在N和i的一个相似度得分。 是i和N之间的相似度得分。 是u给N的评级结果。公式较好运行的条件是 取值在(-1, 1)之间,这里就要使用归一化概念。
另一种常用的基于物品过滤的算法就是 slope one 算法。它的大概原理是预测用户u对产品j的评分时,预先计算包含所有物品的两物品偏差表;根据u的已评价的所有物品评分与该物品和产品j的偏差( )之和并乘以所有对此两类物品有过评分的用户个数,一一加总,除以所有同时对产品i与u评价过的所有物品有过评分的用户的人数,得到得分。公式如下:
其中, ; 是利用加权s1算法给出的用户u对物品j的预测值。 指的是对所有除j之外u打过分的物品。
python实现:
在前面两节中,基于物品和基于用户的过滤其前提都是用户需要对已有的item进行评分。而实际上,如果一个新的item出现,由于缺乏别人的偏好,他永远不会被推荐。这就是推荐系统中所谓的—— 冷启动 问题。基于用户评价的系统就会出现这种问题。
冷启动 问题的解决方案之一就是 基于物品属性的过滤 来进行推荐:对物品自身的属性进行归纳总结,并以此进行物品推荐。基于物品属性的过滤存在一个问题同样是量纲的不统一。如果量纲不统一极端值将会对推荐系统造成大麻烦。解决方法也很简单:归一化。此章使用的是z-评分。
使用z得分也存在问题,就是极易受到离群值的影响。这里可以使用 改进的标准分数 来缓解这个问题:
什么时候可以进行归一化呢?
这里用曼哈顿距离举例基于物品属性的过滤:
在上一章最后一节对于用户是否喜欢某件item的判别中,实际上包含了分类器的思想:分类器就是利用对象属性判定对象属于哪个组或类别的程序。这里简单用另一个小项目来说明。
简单来说就是根据运动员的某些指标来判断这位运动员属于什么类别的运动员。
准确率有0.8。
『叁』 协同过滤,矩阵分解有感
这个概念经常在机器学习的文章中看到,但由于接触不久,所以一直都是一知半解,没有好好了解过。
首先从字面上理解,“协同”需要一个“集体“,“过滤”就应该是晒选的意思,那么协同过滤总的来说就是通过“集体”来“筛选”,以评分推荐系统为例子,这里的“协同”我个人理解就是集合”众多人的评价”,这里的“评价”,就是“对集体都接触过的事物进行打分”,这样大概就能通过一些共同的事物反应出用户不同的”价值观“,然后通过这样的价值观来”筛选“出价值观高度相似的人,再相互推荐共同都喜爱的东西。那么这样的推荐就很有可能是大家都需要的。
经过资料洗礼过后,得知cf现在的两大方向,一种是以记忆为基础(Memory-base),另一种是基于模型(Model-based Collaborative Filtering)。
普及的比较多的前者,它基于关注的目标,又分为基于用户的协同过滤和基于项目的协同过滤,上面举的一个简单的评分推荐系统的例子就可以说是基于用户的协同过滤,它是通过用户对共同物品的“主观价值”来筛选相似用户,再互补评分高的商品,从而达到推荐商品的目的;那么基于项目的意思就是通过这个用户集体对商品集的评价,在物品的角度上去寻找相似度高的物品,达到推荐商品的效果。虽然针对的目标不通,但以我个人理解,大体上都是依赖这个用户集营造的“价值观”,只不过区别在于,基于用户的CF是“关心”各个用户的“主观价值”上的“区别”,而基于项目的CF则是要基于这整个用户集对项目集的“普世价值观”,来甄别出“物品”上的差异。不知道这么比喻恰不恰当哈,“普世”我这边理解就是“大多数”,是一种整体趋势的意思。价值观比较“抽象”的话,再直接点这里的“价值观”就相当于物理中的“参考系”。
但是以上两种方法在面对,不是每个用户对大多数商品都做出过评价(数据稀疏)时就无能为力,所以基于这个问题就引导出了基于模型(Model-based )的CF,我在最近的论文中接触到的就是一个“矩阵分解”的协同过滤,它能够基于现有的数据得到一个模型,再用此模型进行推荐。那么是如何做到的呢?接下来看看矩阵分解。
假设我先在有一个关于用户对音乐评分的矩阵如下图:
只有上述的数据是很难使用户相互推荐音乐的,因为可以看出用户本身听过的歌就不够多,那么如何使数据更加“饱满”呢?这时正是需要矩阵分解的时候,矩阵分解算法的数学理论基础是矩阵的行列变换。行列变换中又有以下规则,我们知道矩阵A进行行变换相当于A左乘一个矩阵,矩阵A进行列变换等价于矩阵A右乘一个矩阵,因此矩阵A可以表示为A=PEQ=PQ(E是标准阵)。
形象的表示如下图:
矩阵分解的目的就是把一个稀疏的用户评分矩阵分解成用户因子矩阵和项目因子矩阵相乘的形式R=U(转置)*I,我们的目的就是最后再让两个因子矩阵反乘回去得到饱满的用户评分矩阵。那么这个用户,项目因子是个什么东西呢?我们接着上面的音乐评分的形式说,一首歌可能包含多种音乐风格,我们可以量化风格,体现各种风格在一首歌中的比重,那么这里的“潜在因子”我们就可以当作“音乐风格”,K个因子就可以看作K种风格。譬如下图:
可以说,这些因子就是我们的模型中的重要参数,个人理解分解出来的这两个因子矩阵就可以说是基于模型的CF中的,“模型”的了,其实我觉得可以类比线性模型中的参数,我们的回归模型最终重要的不就是公式中的各项参数吗,这两个因子矩阵其实就是我们这个模型中的重要参数,参数知道了模型也就求出来了。如果不了解线性模型可以参考吴恩达大大的机器学习课程,里面介绍的很详细,不像我这边一知半哈。
那么这些个值具体是怎么得出来的呢?过程和求线性回归也很像,接下来就是相关的简单推倒,首先,我们假设,真实的用户评分和我们预测评分的差遵循高斯分布
R用是评分矩阵 U是用户因子矩阵,V是项目因子矩阵
接下来就是极大似然估计,使,在现有数据下概率最大化
类比求线性模型,就能够了解思想很相似,所以应该同样是运用了似然估计的思想,要使值最大,式子两边同时取对数,可以看到,如果要使概率最大,那么公式的第一项就要最小,是不是想到了什么,没错接下来就可以看到最小二乘法的式子。
线性模型我们遇到这个情况一般怎么做,没错,就是梯度下降。首先求偏导数
最后就是梯度下降的矩阵因子更新公式:
接下来迭代到自己设置的阈值收敛就能得到局部最优解了。
下面是我根据上述矩阵分解的思想随机的模拟实践,可以自行感受一下准度,可能写搓了点~
注释:以上诸多图片材料来自网上多篇博客文章
https://www.hu.com/question/26743347
http://blog.csdn.net/dream_angel_z/article/details/46288167
还有方便实用sklearn的中文API文档
http://cwiki.apachecn.org/pages/viewpage.action?pageId=10030193
『肆』 协同过滤的算法细分
这是最早应用协同过滤系统的设计,主要是解决Xerox公司在 Alto的研究中心资讯过载的问题。这个研究中心的员工每天会收到非常多的电子邮件却无从筛选分类,于是研究中心便发展这项实验性的邮件系统来帮助员工解决这项问题。 其运作机制大致如下:
个人决定自己的感兴趣的邮件类型;个人旋即随机发出一项资讯需求,可预测的结果是会收到非常多相关的文件;从这些文件中个人选出至少三笔资料是其认为有用、会想要看的;系统便将之记录起来成为个人邮件系统内的过滤器,从此以后经过过滤的文件会最先送达信箱;以上是协同过滤最早的应用,接下来的里程碑为GroupLens。 这个系统主要是应用在新闻的筛选上,帮助新闻的阅听者过滤其感兴趣的新闻内容,阅听者看过内容后给一个评比的分数,系统会将分数记录起来以备未来参考之用,假设前提是阅听者以前感兴趣的东西在未来也会有兴趣阅听,若阅听者不愿揭露自己的身分也可以匿名进行评分。 和Tapestry不同之处有两点,首先,Tapestry专指一个点(如一个网站内、一个系统内)的过滤机制;GroupLens则是跨点跨系统的新闻过滤机制。再来,Tapestry不会将同一笔资料的评比总和起来;GroupLens会将同一笔资料从不同使用者得到的评比加总。
GroupLens具有以下特点:开放性:所有的新闻阅听者皆可使用,虽然系统委托Better Bit Bureau设计给分的系统,但若有不同的评分机制也适用于GroupLens。方便性:给分并不是一件困难的事情且沟通上非常方便,评分结果容易诠释。规模性:有可能发展成大规模的系统,一旦发展成大规模,储存空间与计算成本问题显得相当棘手。隐密性:如果使用者不想让别人知道他是谁,别人就不会知道。由此可以看出,现今网络各个推荐系统的雏形已然形成,在GroupLens之后还有性质相近的MovieLens,电影推荐系统;Ringo,音乐推荐系统;Video Recommender,影音推荐系统;以及Jster,笑话推荐系统等等。乃至于今日的YouTube、aNobii皆是相似性值得网络推荐平台,较不同的是经过时间推移,网络越来越发达,使用者越来越多,系统也发展得越来越严密。 最著名的电子商务推荐系统应属亚马逊网络书店,顾客选择一本自己感兴趣的书籍,马上会在底下看到一行“Customer Who Bought This Item Also Bought”,亚马逊是在“对同样一本书有兴趣的读者们兴趣在某种程度上相近”的假设前提下提供这样的推荐,此举也成为亚马逊网络书店为人所津津乐道的一项服务,各网络书店也跟进做这样的推荐服务如台湾的博客来网络书店。 另外一个著名的例子是Facebook的广告,系统根据个人资料、周遭朋友感兴趣的广告等等对个人提供广告推销,也是一项协同过滤重要的里程碑,和前二者Tapestry、GroupLens不同的是在这里虽然商业气息浓厚同时还是带给使用者很大的方便。 以上为三项协同过滤发展上重要的里程碑,从早期单一系统内的邮件、文件过滤,到跨系统的新闻、电影、音乐过滤,乃至于今日横行互联网的电子商务,虽然目的不太相同,但带给使用者的方便是大家都不能否定的。
『伍』 推荐算法综述
推荐系统的目的是通过推荐计算帮助用户从海量的数据对象中选择出用户最有可能感兴趣的对象。涉及三个基本内容:目标用户、待推荐项目以及推荐算法,基本流程为:描述为用户模型构建、项目模型建立以及推荐算法处理三个基本流程;
为了能够为用户提供准确的推荐服务,推荐系统需要为用户构建用户模型,该模型能够反映用户动态变化的多层次兴趣偏好,有助于推荐系统更好的理解用户的特征和需求。构建用户模型通常需要经历三个流程:用户数据收集,用户模型表示以及用户模型更新。
(1)用户数据收集:用户数据是用户模型构建的基础,用户数据收集的方式一般有显示方式获取和隐式方式获取两种。
显示方式获取的数据是用户特征属性和兴趣偏好的直接反映,所获得的信息数据是较为客观全面的,比如用户在注册时包含的性别、年龄等信息可以直接表示出用户的基本人口学信息和兴趣信息,用户对项目的评分可以反映出用户的偏好。但显示获取的方式最大的缺陷是其实时性较差,并且具有很强的侵袭性。
隐式方式获取用户数据是在不干扰用户的前提下,采集用户的操作行为数据,并从中挖掘出用户的兴趣偏好。用户的很多操作行为都能反映出用户的喜好,比如用户浏览网页的速度、用户查询的关键字等,推荐系统在不影响用户使用系统的情况下,通过行为日志挖掘出用户的偏好。隐式获取方式由于具有较好的实时性和灵活性和较弱的侵袭性,己经成为推荐系统中主要的用户数据采集方式。
(2)用户模型表示:用户模型是从用户数据中归纳出的推荐系统所理解的用户兴趣偏好的结构化形式。
a 基于内容关键词表示;
b 基于评分矩阵表示;
(3)用户模型更新:推荐系统面临的问题之一是兴趣漂移,兴趣漂移的根本原因在于用户的兴趣会随时间发生改变。为了使用户模型够准确的代表用户的兴趣,推荐系统需要根据最新的用户数据对用户模型进行更新。
目前项目模型主要通过基于内容和基于分类这两类方式来建立。基于内容的方式是以项目本身内容为基础,向量空间模型表示是目前御用最为广泛的基于内容的方式。
基于分类的方式是根据项目的内容或者属性,将项目划分到一个或者几个类别中,利用类别信息来表示项目,这种方法可以很方便地将项目推荐给对某一类别感兴趣的用户。常见的分类算法有朴素贝叶斯算法和KNN分类算法等。
推荐系统实现的核心是其使用的推荐算法。针对不同的使用环境及其系统的数据特征,选取不同的推荐算法,可以在本质上提高推荐系统的推荐效果。根据不同的分类标准,推荐算法出现了有很多不同的分类方法,本文采用了比较普遍的分类方法。
推荐系统通常被分为基于内容的推荐算法、协同过滤推荐算法以及混合模型推荐算法三大类。
基于内容的推荐算法,其本质是对物品或用户的内容进行分析建立属性特征。系统根据其属性特征,为用户推荐与其感兴趣的属性特征相似的信息。算法的主要思想是将与用户之前感兴趣的项目的内容相似的其他项目推荐给用户。
CBF(Content-based Filter Recommendations)算法的主要思想是将与用户之前感兴趣的项目的内容相似的其他项目推荐给用户,比如用户喜欢Java开发的书籍,则基于内容过滤算法将用户尚未看过的其他Java开发方面的书籍推荐给用户。因此,该推荐算法的关键部分是计算用户模型和项目模型之间的内容相似度,相似度的计算通常采用余弦相似性度量。
基于内容的推荐过程一般分为以下三个模块:
(1)特征提取模块:由于大多数物品信息是非结构化的,需要为每个物品(如产品、网页、新闻、文档等)抽取出一些特征属性,用某一恰当的格式表示,以便下一阶段的处理。如将新闻信息表示成关键词向量,此种表示形式将作为下一模块(属性特征学习模块)的输入。
(2)特征学习模块:通过用户的历史行为数据特征,机器学习出用户的兴趣特征模型。本模块负责收集代表用户喜好的数据信息,并泛化这些数据,用于构建用户特征模型。通常使用机器学习的泛化策略,来将用户喜好表示为兴趣模型。
(3)推荐模块:该模块利用上一阶段得到的用户特征模型,通过对比用户兴趣模型与带推荐物品的特征相似度,为用户推荐与其兴趣相似度较高的物品,从而达到个性化推荐的目的。该模块一般采用计算用户兴趣向量与待推荐物品特征向量的相似度来进行排序,将相似度较高的物品推荐给相应用户。计算相似度有多种方法,如皮尔逊相关系数法、夹角余弦法、Jaccard相关系数法等。
协同过滤算法(Collaborative Filtering)是于内容无关的,即不需要额外获取分析用户或物品的内容属性特征。是基于用户历史行为数据进行推荐的算法。其通过分析用户与物品间的联系来寻找新的用户与物品间的相关性。
该算法算法通常有两个过程,一个过程是预测,另一个过程是推荐。主流的协同过滤算法包括三种:基于用户的协同过滤(User-Based Collaborative Filtering,UBCF)、基于项目的协同过滤(Item-Based Collaborative Filtering, IBCF)和基于模型的协同过滤(Model-Based Collaborative Filtering, MBCF)
(1)基于用户的协同过滤算法
基于用户的协同过滤推荐算法,先通过用户历史行为数据找到和用户u相似的用户,将这些用户感兴趣的且u没有点击过的物品推荐给用户。
算法主要包括以下两个步骤:
(1)找到与目标用户喜好相似的邻居用户集合。
(2)在邻居用户集合中,为用户推荐其感兴趣的物品。
UBCF的基本思想是将与当前用户有相同偏好的其他用户所喜欢的项目推荐给当前用户。一个最典型的例子就是电影推荐,当我们不知道哪一部电影是我们比较喜欢的时候,通常会询问身边的朋友是否有好的电影推荐,询问的时候我们习惯于寻找和我们品味相同或相似的朋友。
(2)基于物品的协同过滤算法
基于物品的协同过滤算法(Item-based Collaborative Filtering)其主要思想是,为用户推荐那些与他们之前喜欢或点击过的物品相似的物品。不过基于物品的协同过滤算法并不是利用物品的内容属性特征来计算物品之间的相似度的。该类算法是利用用户的历史行为数据计算待推荐物品之间的相似度。在该类算法中,如果喜欢物品A的用户大都也喜欢物品B,那么就可以认为物品A和物品B之间的相似度很高。
算法分为以下两个步骤:
(1)根据用户历史行为数据,计算物品间的相似度。
(2)利用用户行为和物品间的相似度为用户生成推荐列表。
IBCF算法是亚马逊在2003年发表的论文中首次提出,该算法的基本思想是根据所有用户的历史偏好数据计算项目之间的相似性,然后把和用户喜欢的项目相类似的并且用户还未选择的其他项目推荐给用户,例如,假设用户喜欢项目a,则用户喜欢与项目a高度相似且还未被用户选择的项目b的可能性非常大,因此将项目b推荐给用户。
UBCF和IBCF都属于基于内存的协同过滤算法,这类算法由于充分发挥了用户的评分数据,形成全局推荐,因此具有较高的推荐质量。但随着用户和项目的规模增长,这类算法的计算时间大幅上升,使得系统的性能下降。针对该问题,研究人员提出将数据挖掘中的模型和CF算法结合,提出了基于模型的协同过滤算法(MBCF) 。
MBCF算法利用用户历史评分数据建立模型,模型建立的算法通常有奇异值分解、聚类算法、贝叶斯网络、关联规则挖掘等,且通常是离线完成。由于MBCF通常会对原始评分值做近似计算,通过牺牲一定的准确性来换取系统性能,因此MBCF的推荐质量略差于UBCF和IBCF。
由于基于内容的推荐算法和协同过滤推荐算法都有其各自的局限性,混合推荐算法应运而生。混合推荐算法根据不同的应用场景,有多
种不同的结合方式,如加权、分层和分区等。
目前使用的混合推荐算法的思想主要可以分成以下几类:
(1)多个推荐算法独立运行,获取的多个推荐结果以一定的策略进行混合,例如为每一个推荐结果都赋予一个权值的加权型混合推荐算法和将各个推荐结果取TOP-N的交叉混合推荐算法。
(2)将前一个推荐方法产出的中间结果或者最终结果输出给后一个推荐方法,层层递进,推荐结果在此过程中会被逐步优选,最终得到一个精确度比较高的结果。
(3)使用多种推荐算法,将每种推荐算法计算过程中产生的相似度值通过权重相加,调整每个推荐算法相似度值的权重,以该混合相似度值为基础,选择出邻域集合,并结合邻域集合中的评估信息,得出最优的推荐结果。
BP (Back Propagation)神经网络是目前应用最广泛的神经网络模型之一,是一种按误差逆传播算法训练的多层前馈网络。
BP神经网络模型包括输入层、隐藏层和输出层,每一层由一个或多个神经元组成,其结构图如图2-3所示。BP神经网络拥有很强的非线性映射能力和自学习、自适应能力,网络本身结构的可变性,也使其十分灵活,一个三层的BP神经网络能够实现对任意非线性函数进行逼近。
BP神经网络的训练过程通常分为3个过程,依次分别为数据初始化过程、正向推演计算过程以及反向权重调整过程。数据初始化是BP神经网络能够进行有效训练的前提,该过程通常包括输入数据进行归一化处理和初始权重的设置;正向推演计算是数据沿着网络方向进行推演计算;反向权重调整则是将期望输出和网络的实际输出进行对比,从输出层开始,向着输入层的方向逐层计算各层中各神经元的校正差值,调整神经元的权重。正向推演计算和反向权重调整为对单个训练样本一次完整的网络训练过程,经过不断的训练调整,网络的实际输出越来越趋近于期望输出,当网络输出到达预期目标,整个训练过程结束。
TF-IDF(Term Frequency-Inverse Document Frequency,词频一逆文档)是文本处理中常用的加权技术,广泛应用于信息检索、搜索引擎等领域。
TF-IDF的主要思想是:如果一个关键词在文档中出现的频率很高,而在其他文档中出现次数较少,则该关键词被认为具有较强的代表性,即该关键词通过TF-IDF计算后有较高的权重。
TextRank算法,是一种用于文本关键词排序的算法,页排序算法PageRank。
PageRank基本思想是将每个网页看成一个节点,网页中的链接指向看成一条有向边,一个网页节点的重要程度取决于链接指向该网页节点的其他节点的数量和重要权值,该过程描述如下:让每一个网页对其所包含的链接指向的网页进行迭代投票,每次迭代投票过程中票的权重取决于网页当前拥有的票数,当投票结果收敛或者达到指定的迭代次数时,每个网页所获得票数即为网页重要程度权值。
TextRank算法相比于TF-IDF最大的优点是TextRank是一种无监督的学习,因此不会受限于文本的主题,并且无需大规模的训练集,可以针对单一文本进行快速的关键词的权重计算。
『陆』 推荐系统的主要推荐方法
基于内容的推荐(Content-based Recommendation)是信息过滤技术的延续与发展,它是建立在项目的内容信息上作出推荐的,而不需要依据用户对项目的评价意见,更多地需要用机 器学习的方法从关于内容的特征描述的事例中得到用户的兴趣资料。在基于内容的推荐系统中,项目或对象是通过相关的特征的属性来定义,系统基于用户评价对象 的特征,学习用户的兴趣,考察用户资料与待预测项目的相匹配程度。用户的资料模型取决于所用学习方法,常用的有决策树、神经网络和基于向量的表示方法等。 基于内容的用户资料是需要有用户的历史数据,用户资料模型可能随着用户的偏好改变而发生变化。
基于内容推荐方法的优点是:1)不需要其它用户的数据,没有冷开始问题和稀疏问题。2)能为具有特殊兴趣爱好的用户进行推荐。3)能推荐新的或不是很流行的项目,没有新项目问题。4)通过列出推荐项目的内容特征,可以解释为什么推荐那些项目。5)已有比较好的技术,如关于分类学习方面的技术已相当成熟。
缺点是要求内容能容易抽取成有意义的特征,要求特征内容有良好的结构性,并且用户的口味必须能够用内容特征形式来表达,不能显式地得到其它用户的判断情况。 协同过滤推荐 (Collaborative Filtering Recommendation)技术是推荐系统中应用最早和最为成功的技术之一。它一般采用最近邻技术,利用用户的历史喜好信息计算用户之间的距离,然后 利用目标用户的最近邻居用户对商品评价的加权评价值来预测目标用户对特定商品的喜好程度,系统从而根据这一喜好程度来对目标用户进行推荐。协同过滤最大优 点是对推荐对象没有特殊的要求,能处理非结构化的复杂对象,如音乐、电影。
协同过滤是基于这样的假设:为一用户找到他真正感兴趣的内容的好方法是首先找到与此用户有相似兴趣的其他用户,然后将他们感兴趣的内容推荐给此用 户。其基本思想非常易于理解,在日常生活中,我们往往会利用好朋友的推荐来进行一些选择。协同过滤正是把这一思想运用到电子商务推荐系统中来,基于其他用 户对某一内容的评价来向目标用户进行推荐。
基于协同过滤的推荐系统可以说是从用户的角度来进行相应推荐的,而且是自动的即用户获得的推荐是系统从购买模式或浏览行为等隐式获得的,不需要用户努力地找到适合自己兴趣的推荐信息,如填写一些调查表格等。
和基于内容的过滤方法相比,协同过滤具有如下的优点:1) 能够过滤难以进行机器自动内容分析的信息,如艺术品,音乐等。2) 共享其他人的经验,避免了内容分析的不完全和不精确,并且能够基于一些复杂的,难以表述的概念(如信息质量、个人品味)进行过滤。3) 有推荐新信息的能力。可以发现内容上完全不相似的信息,用户对推荐信息的内容事先是预料不到的。这也是协同过滤和基于内容的过滤一个较大的差别,基于内容的过滤推荐很多都是用户本来就熟悉的内容,而协同过滤可以发现用户潜在的但自己尚未发现的兴趣偏好。4) 能够有效的使用其他相似用户的反馈信息,较少用户的反馈量,加快个性化学习的速度。
虽然协同过滤作为一种典型的推荐技术有其相当的应用,但协同过滤仍有许多的问题需要解决。最典型的问题有稀疏问题(Sparsity)和可扩展问题(Scalability)。 基于关联规则的推荐 (Association Rule-based Recommendation)是以关联规则为基础,把已购商品作为规则头,规则体为推荐对象。关联规则挖掘可以发现不同商品在销售过程中的相关性,在零 售业中已经得到了成功的应用。管理规则就是在一个交易数据库中统计购买了商品集X的交易中有多大比例的交易同时购买了商品集Y,其直观的意义就是用户在购 买某些商品的时候有多大倾向去购买另外一些商品。比如购买牛奶的同时很多人会同时购买面包。
算法的第一步关联规则的发现最为关键且最耗时,是算法的瓶颈,但可以离线进行。其次,商品名称的同义性问题也是关联规则的一个难点。 由于各种推荐方法都有优缺点,所以在实际中,组合推荐(Hybrid Recommendation)经常被采用。研究和应用最多的是内容推荐和协同过滤推荐的组合。最简单的做法就是分别用基于内容的方法和协同过滤推荐方法 去产生一个推荐预测结果,然后用某方法组合其结果。尽管从理论上有很多种推荐组合方法,但在某一具体问题中并不见得都有效,组合推荐一个最重要原则就是通 过组合后要能避免或弥补各自推荐技术的弱点。
在组合方式上,有研究人员提出了七种组合思路:1)加权(Weight):加权多种推荐技术结果。2)变换(Switch):根据问题背景和实际情况或要求决定变换采用不同的推荐技术。3)混合(Mixed):同时采用多种推荐技术给出多种推荐结果为用户提供参考。4)特征组合(Feature combination):组合来自不同推荐数据源的特征被另一种推荐算法所采用。5)层叠(Cascade):先用一种推荐技术产生一种粗糙的推荐结果,第二种推荐技术在此推荐结果的基础上进一步作出更精确的推荐。6)特征扩充(Feature augmentation):一种技术产生附加的特征信息嵌入到另一种推荐技术的特征输入中。7)元级别(Meta-level):用一种推荐方法产生的模型作为另一种推荐方法的输入。
『柒』 k近邻协同过滤和协同过滤算法的区别
协同过滤算法
协同过滤(Collaborative filtering, CF)算法是目前个性化推荐系统比较流行的算法之一。
协同算法分为两个基本算法:基于用户的协同过滤(UserCF)和基于项目的协同过滤(ItemCF)。
最近这段时间,多数人都选择使用被称为个性化协同推荐(Personalized Collaborative Recommender)的算法。这也是亚马逊、Netflix、Facebook 的好友推荐,以及一家英国流行音乐网站 Last.fm 的核心算法。说它 “个性化”,是因为这种算法会追踪用户的每一个行为(如浏览过的页面、订单记录和商品评分),以此进行推荐;它们可不是瞎猫碰上死耗子——全凭运气。说它 “协同”,则是因为这种算法会根据许多其他的顾客也购买了这些商品或者对其显示出好感,而将两样物品视为彼此关联,它不是通过分析商品特征或者关键词来进行判断的。
『捌』 协同过滤(2): KDD2020- HyperGraph CF 基于超图
协同过滤推荐系统是当今众多推荐系统中最流行和最重要的推荐方法之一。
尽管已经被广泛采用,但是现有的基于 cf 的方法,从矩阵分解到新兴的基于图的方法, 在训练数据非常有限的情况下表现不佳 (数据稀疏问题)。
本文首先指出了造成这种不足的根本原因,并指出现有基于 CF 的方法固有的两个缺点,即: 1)用户和物品建模不灵活; 2)高阶相关性建模不足。
在这种情况下,文中提出了一个双通道超图协同过滤(DHCF)框架来解决上述问题。
首先,引入 双通道学习策略 (Dual-Channel),全面利用分治策略,学习用户和物品的表示,使这两种类型的数据可以优雅地相互连接,同时保持其特定属性。
其次, 利用超图结构对用户和具有显式混合高阶相关性的物品进行建模 。提出了跳跃超图卷积(JHConv)方法,实现高阶关系嵌入的显式和有效传播。
推荐系统的核心是一系列的推荐算法,这些算法能够**根据用户的个人特征有效地从爆炸式信息筛选出信息。协同过滤是目前最受欢迎和广泛采用的方法之一。
CF 持有一个基本的假设,当向用户提供推荐时: 那些行为相似的人(例如,经常访问同一个网站)很可能在物品(例如,音乐、视频、网站)上分享相似的偏好。
为了实现这一点,一个典型的基于 CFbased 方法执行一个两步策略: 它首先利用历史交互区分相似的用户和项目; 然后基于上面收集的信息,向特定用户生成推荐。
现有的 CF 方法可以分为三类。
虽然 CF 方法已经研究了多年,但仍然存在局限性,特别是在训练的先验知识非常有限的情况下。为了理解这些缺陷,深入挖掘现有 CF 方法的内在机制得到以下局限性:
基于这些生成的连接组,即超边,可以分别为用户和物品构造两个超图,即两个通道的表示。本文提出了一种新的跳跃超图卷积算法(JHConv) ,该算法通过聚合邻域的嵌入并引入先验信息,有效地在超图上进行信息传播。(与传统的基于图的方法对比,用户超图和项目超图,可以更灵活地进行复杂的数据关联建模,并与不同类型的数据结合。)
超图定义为 ,V表示图节点, 表示超边集合,超图邻接矩阵 描述节点与超边的关系
在高层次上,DHCF 首先通过一个双通道超图框架学习用户和物品的两组嵌入,在此框架上,DHCF 通过计算用户和物品嵌入查找表的内积,进一步计算出用户-项目偏好矩阵。基于这样的偏好矩阵,DHCF 估计用户对某个商品感兴趣的可能性。
总体分为三步:
构建用户和物品嵌入矩阵:
为了在预定义的混合高阶关系上聚合相邻消息,执行以下高阶消息传递:
为了提取有区别的信息,我们对用户和物品定义为
综上所述,上述两个过程构成了一个集成的DHCF 层,允许对用户和物品进行明确的建模和编码,并通过强大的嵌入功能进一步更新和生成更精确的嵌入超图结构。这种精细嵌入可以进一步应用于推荐系统中的各种下游任务。
与 传统 HGNNConv 相比,JHConv 允许模型同时考虑其原始特征和聚合相关表示,在另一方面,这样的 resnet结构的跳跃连接使模型能够避免由于集成了许多其他连接而导致的信息稀释。
引入高阶关联来实现构建超边,根据自定义的规则分别对用户和物品进行高阶关联提取
定义1: 物品的 k 阶可达邻居。在用户-物品交互图,更具体地说是二部图中,如果在 itemi 和 itemj 之间存在一个相邻顶点序列(即一条路) ,且该路径中的用户数小于 k,itemi (itemj)是 itemi (itemi)的 k 阶可达邻居。
定义2: 物品的 k阶可达用户。在物品-用户二部图中,如果用户 j 和物品 k 之间存在直接交互作用,则用户 j 是 itemi 的 k 阶可达邻居,而物品 k 是 itemi 的 k 阶可达邻居。
对于 itemi,其 k 阶可达用户集称为 。从数学上讲,超图可以定义在一个集簇上,其中每个集代表一个超边。因此,这里可以通过物品的 k 阶可达用户集构建超边。
然后在用户 k 阶可达规则的基础上构造高阶超边组,该超边组可表示为:
假设通过K阶可达规则,构造a个超边组,最后的超图需要将这a个超边组做融合,见上面的总体框架中的描述。
同理,按照相似的K阶可达的规则,对物品进行分析,构成物品的超边(N个用户,M个物品)
在实验中,每个用户观察到的交互中的10% 被随机选择用于训练,其余的数据用于测试。这样的设置增加了 CF 任务的难度,因为模型只能获取非常有限的观察到的交互。此外,由于数据的高度稀疏性,它可以很好地评价模型从有限的隐式数据集中挖掘有用信息的能力。对于所有四个数据集,每个用户至少有两个用于训练的交互。
这篇工作基于超图结构,提出了一种新的CF框架,与基于图神经网络的CF相比,超图结构更符合实际情况;此外,双通道的思路也值得借鉴,之前也分析的一篇双通道BPR的论文。近年来,基于图神经网络的推荐已经成为研究主流,而其中超图相关的工作少之又少,最近看到的另一篇是SIGIR2020上的一篇Next Item Recommendation with Sequential Hypergraphs,在超图神经网络上并没多大的改进,重点仍然在于如何用这种结构去解决存在的问题。
如果觉得有用,欢迎点赞关注赞赏,若对推荐感兴趣欢迎评论区/私信交流~~~